RPi Node-Red: Multi-Button Board + RGB LED


This tutorial will utilize a multi-button board input device to control an RGB LED module. Students will learn about and utilize binary counting to program the multi-button board. This tutorial adds to prior knowledge on the Button + LED tutorial.


  • Raspberry Pi 3 Model B
  • Multi-Button Board
  • RGB LED Module
  • F-F Jumper Cables

Getting Started

Setting up the Hardware

Multi-Button Board to Raspberry Pi

  • K1 to #6
  • K2 to #5
  • K3 to #22
  • K4 to #27
  • K5 to #17
  • K6 to #4
  • K7 to #21
  • K8 to #20
  • G to GND

RGB LED to Raspberry Pi

  • R to #13
  • G to #19
  • B to #26
  • GND to GND

Setting up Node-Red

  1. Insert RPi-GPIO-In Nodes
    1. These nodes act as inputs from the multi-button board.
    2. Place 8 nodes, representing the 8 button inputs.
    3. Assign each button (K1, K2…, K8) to their respective GPIO pin on the Raspberry Pi.
    4. Set the Resistor setting to pullup.
  2. Insert Change Nodes
    1. These nodes translate the input nodes from the multi-button board into num ber values from 0 to 7 (numbering starts at 0 due to how computers start counting at 0 instead of 1).
    2. Place 8 nodes, labeling them from 0 to 7.
    3. For each node, change the data type to number and set the values to 0-7 starting with the first node.
  3. Connect an RPi-GPIO-In node to a Change node
    1. Connecting the two node types translates the button input into a representable value.
  4. Insert Function Nodes
    1. These nodes act as “decoders” that translates the numbered value into a bit-string.
    2. The RGB values represent three individual switches. By having a bit-string representation, each bit can determine the color’s bit state.
    3. Function for [4] node
      1. // Value retrieved from initial input
        var value = msg.payload;
        // subtract_bit determined by bit location
        var subtract_bit = 4;
        // If value is greater than the subtract_bit, indicates that the bit state for [4] is 1
        if (value >= subtract_bit) {
            var new_value = {payload: value - subtract_bit};
            var bit_state = {payload: 1};
            return [new_value, bit_state];
        // Otherwise, bit state for [4] is 0
        else {
            value = {payload: value};
            var bit_state = {payload: 0};
            return [value, bit_state];
    4. Function for [2] node
      1. // Value retrieved from initial input
        var value = msg.payload;
        // subtract_bit determined by bit location
        var subtract_bit = 2;
        // If value is greater than the subtract_bit, indicates that the bit state for [2] is 1
        if (value >= subtract_bit) {
            var new_value = {payload: value - subtract_bit};
            var bit_state = {payload: 1};
            return [new_value, bit_state];
        // Otherwise, bit state for [2] is 0
        else {
            value = {payload: value};
            var bit_state = {payload: 0};
            return [value, bit_state];
    5. Function for [1] node
      1. var bit_state = {payload: msg.payload};
        return bit_state;
  5. Insert RPi-GPIO-Out Nodes
    1. These nodes act as output nodes for the RGB LED module.
    2. Place three nodes, each representing one of the RGB LEDs and assign to their respective GPIO pin.


If you have successfully followed this tutorial module, you should be able to change the RGB LED module’s color from the multi-button board.

Node-Red Solution

[{"id":"3fc0ad9f.487e12","type":"change","z":"b8b26cb8.1baef","name":"2","rules":[{"t":"set","p":"payload","pt":"msg","to":"2","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":280,"wires":[["5f4cfd28.f4a124"]]},{"id":"cbd11229.36a9","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K2","pin":"29","intype":"up","debounce":"25","read":false,"x":290,"y":220,"wires":[["c4e5685f.e3fa88"]]},{"id":"96dd66c6.026928","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K4","pin":"13","intype":"up","debounce":"25","read":false,"x":290,"y":340,"wires":[["75069901.3cc9b8"]]},{"id":"d710bb14.62b1f8","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K3","pin":"15","intype":"up","debounce":"25","read":false,"x":290,"y":280,"wires":[["3fc0ad9f.487e12"]]},{"id":"2b18a8d6.7f92f8","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K6","pin":"7","intype":"up","debounce":"25","read":false,"x":290,"y":460,"wires":[["ac5a8574.e332f8"]]},{"id":"3c93bf81.fb10d","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K8","pin":"38","intype":"up","debounce":"25","read":false,"x":290,"y":580,"wires":[["d0ff8cfe.8f2c5"]]},{"id":"aac40b7a.f36bb8","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K7","pin":"40","intype":"up","debounce":"25","read":false,"x":290,"y":520,"wires":[["3954b9a.a55c346"]]},{"id":"551dc587.3f572c","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K5","pin":"11","intype":"up","debounce":"25","read":false,"x":290,"y":400,"wires":[["631bd1a6.8dd45"]]},{"id":"31bb63ee.bf082c","type":"change","z":"b8b26cb8.1baef","name":"0","rules":[{"t":"set","p":"payload","pt":"msg","to":"0","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":160,"wires":[["5f4cfd28.f4a124"]]},{"id":"c4e5685f.e3fa88","type":"change","z":"b8b26cb8.1baef","name":"1","rules":[{"t":"set","p":"payload","pt":"msg","to":"1","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":220,"wires":[["5f4cfd28.f4a124"]]},{"id":"75069901.3cc9b8","type":"change","z":"b8b26cb8.1baef","name":"3","rules":[{"t":"set","p":"payload","pt":"msg","to":"3","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":340,"wires":[["5f4cfd28.f4a124"]]},{"id":"631bd1a6.8dd45","type":"change","z":"b8b26cb8.1baef","name":"4","rules":[{"t":"set","p":"payload","pt":"msg","to":"4","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":400,"wires":[["5f4cfd28.f4a124"]]},{"id":"ac5a8574.e332f8","type":"change","z":"b8b26cb8.1baef","name":"5","rules":[{"t":"set","p":"payload","pt":"msg","to":"5","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":460,"wires":[["5f4cfd28.f4a124"]]},{"id":"3954b9a.a55c346","type":"change","z":"b8b26cb8.1baef","name":"6","rules":[{"t":"set","p":"payload","pt":"msg","to":"6","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":520,"wires":[["5f4cfd28.f4a124"]]},{"id":"d0ff8cfe.8f2c5","type":"change","z":"b8b26cb8.1baef","name":"7","rules":[{"t":"set","p":"payload","pt":"msg","to":"7","tot":"num"}],"action":"","property":"","from":"","to":"","reg":false,"x":410,"y":580,"wires":[["5f4cfd28.f4a124"]]},{"id":"23c6a01e.0e013","type":"rpi-gpio in","z":"b8b26cb8.1baef","name":"K1","pin":"31","intype":"up","debounce":"25","read":false,"x":290,"y":160,"wires":[["31bb63ee.bf082c"]]},{"id":"5f4cfd28.f4a124","type":"function","z":"b8b26cb8.1baef","name":"[4]","func":"// Value retrieved from initial input\nvar value = msg.payload;\n\n// subtract_bit determined by bit location\nvar subtract_bit = 4;\n\n// If value is greater than the subtract_bit, indicates that the bit state for [4] is 1\nif (value >= subtract_bit) {\n    var new_value = {payload: value - subtract_bit};\n    var bit_state = {payload: 1};\n    return [new_value, bit_state];\n}\n\n// Otherwise, bit state for [4] is 0\nelse {\n    value = {payload: value};\n    var bit_state = {payload: 0};\n    return [value, bit_state];\n}","outputs":2,"noerr":0,"x":590,"y":340,"wires":[["fb4d798f.1edc38"],["a17a86af.bfb648"]]},{"id":"fb4d798f.1edc38","type":"function","z":"b8b26cb8.1baef","name":"[2]","func":"// Value retrieved from initial input\nvar value = msg.payload;\n\n// subtract_bit determined by bit location\nvar subtract_bit = 2;\n\n// If value is greater than the subtract_bit, indicates that the bit state for [2] is 1\nif (value >= subtract_bit) {\n    var new_value = {payload: value - subtract_bit};\n    var bit_state = {payload: 1};\n    return [new_value, bit_state];\n}\n\n// Otherwise, bit state for [2] is 0\nelse {\n    value = {payload: value};\n    var bit_state = {payload: 0};\n    return [value, bit_state];\n}","outputs":2,"noerr":0,"x":730,"y":360,"wires":[["bb73fc3f.28e14"],["74e9a7d8.f4a0e8"]]},{"id":"bb73fc3f.28e14","type":"function","z":"b8b26cb8.1baef","name":"[1]","func":"var bit_state = {payload: msg.payload};\nreturn bit_state;","outputs":1,"noerr":0,"x":870,"y":380,"wires":[["9a25ca9f.d2dca8"]]},{"id":"a17a86af.bfb648","type":"rpi-gpio out","z":"b8b26cb8.1baef","name":"Red","pin":"33","set":"","level":"0","freq":"","out":"out","x":750,"y":280,"wires":[]},{"id":"74e9a7d8.f4a0e8","type":"rpi-gpio out","z":"b8b26cb8.1baef","name":"Green","pin":"35","set":"","level":"0","freq":"","out":"out","x":890,"y":300,"wires":[]},{"id":"9a25ca9f.d2dca8","type":"rpi-gpio out","z":"b8b26cb8.1baef","name":"Blue","pin":"37","set":"","level":"0","freq":"","out":"out","x":1030,"y":320,"wires":[]}]
image_pdfGenerate PDFimage_printPrint

RPi Node Red: Streaming rpi camera to dashboard


Broadcast a live video feed from the RPi camera to a locally and network accessible webpage.


RPi and a RPi camera.


Only setup here is connecting the RPi camera to the pi using a ribbon cable.

Installing Streaming Software:

We’ll be following this tutorial here: https://elinux.org/RPi-Cam-Web-Interface

The page there is extremely verbose and scary, but the actual setup is very simple and should only take a few minutes.


First open a terminal, and enter

git clone https://github.com/silvanmelchior/RPi_Cam_Web_Interface.git

This will start downloading the git repo for the web interface; this should only take a few seconds.

cd RPi_Cam_Web_Interface

Enters the directory that we just downloaded.


runs the script to start installing everything, it will prompt you for some settings but all these can be left at their defaults.


In the article we’re following it mentions

The scripts are

    install.sh main installation as used in step 4 above
    update.sh check for updates and then run main installation
    start.sh starts the software. If already running it restarts.
    stop.sh stops the software
    remove.sh removes the software
    debug.sh is same as start but allows raspimjpeg output to console for debugging

    To run these scripts make sure you are in the RPi_Cam_Web_Interface folder then precede the script with a ./
    E.g. To update an existing installation ./update.sh
    E.g. To start the camera software ./start.sh
    E.g. To stop the camera software ./stop.sh


We just ran the ‘install.sh’, which installs everything. Now if we want to start the stream we’ll use ‘start.sh’



If we want to start the stream, say after restarting the pi we’ll have to navigate back to this directory and run the start script.

That process just looks like this:

cd RPi_Cam_Web_Interface


Viewing the stream:

Now for the fun part, actually viewing the stream.

First we’ll need our ip address; this can be found by hovering the mouse over the WiFi applet like this:

Next, on the same pi or any computer on the same local network we can open the stream via this address.

The url will look like this, except with the ip address switched out for your own.

Here’s what the default page looks like when we’re streaming.

You can edit all kinds of settings here, that aren’t really necessary for a basic setup.
There’s also a more minimal page that only shows the video here:

Remember that the IP address will be different for you.


Embedding the stream into node-red dashboard:

The T3 RPi kit comes with the node-red dashboard nodes installed already, and this is what we’ll use to view the stream in node-red. The advantage to doing that is that you can have buttons, graphs, or other data alongside the video feed.

Here is an example where we have the feed coming from a remote controlled car, with buttons alongside to drive the car around.

In this tutorial we’ll focus on getting the video itself to display.

Here is what the configuration for the template node looks like:

everything is set to default, except we’ve added some html code to the template box.
Here’s the code:

<iframe scrolling=no marginwidth=0 marginheight=0 frameborder=0 height=439 width=553 src=""></iframe>

For it to work on your template node, you’ll have to replace the url here with the one for your pi. So the IP address will be different.

The other change is adding a new ui_group.

If you click the pen here, it’ll open the panel to define the new default group.
You can leave this all at default, but I think it looks better with the video if you raise the width slightly.
Here’s mine with the width raised to 9

Now if you deploy and navigate to http://your_ip:1880/ui you should be able to see your video stream embedded in the node-red dashboard.

You can fine tune the iframe settings like width and height in the template node, and the layout size in the dashboard options.

image_pdfGenerate PDFimage_printPrint

RPi Node-Red: Inject + Debug = Hello World

What Will I Learn:

How to use the inject node to send the phrase “Hello World!” to the debug terminal 🙂 This is a classic getting started example and is usually done when first learning to program in a new language.

Parts List:

None except for your raspberry pi already setup.

Getting Started:

Starting Node-Red:

  • Start Node-Red by clicking on the red Node-Red icon on the start menu under the “Programming” section.

Starting web browser Node-Red interface:

  • Start the Chromium web browser by clicking on the blue world icon on the top bar.
  • Click on the “Node-Red” link inside Chromium on the bookmarks bar.

Getting Started:

Programming Hello World! example:

Drag an inject node into your flow from the left node palette.

Double click on the inject node (named timestamp once dragged in) and change data type to “string”

Type “Hello World!” into the Payload section just after the “string” datatype selector.

Drag in a Debug node from the output node palette.

Drag a connection line between the output of the inject node and the input of the debug node – click on the dots on the sides of the nodes to do this.

Deploy your new flow

Click the button on the left of the Inject node.

Click on the “debug” tab on the right side – the icon looks like a bug 😉 You should see your “Hello World!” string displayed


Inject and debug nodes will be used extensively throughout our other lessons and are the building blocks of understanding how JSON messages are sent between nodes.

image_pdfGenerate PDFimage_printPrint

Growth Mindset Resources

Here’s some great resources for those who are implementing Growth Mindset with their students:

Stanford’s d.school is one of my go-to resources for anything creative, so I was a bit surprised when I found this particular one completely by accident.  I was looking for unique team-building tools, and “Stoke Deck” popped up.  This free printable has 28 different activities that will help students to “Boost Energy, Create Focus, Get Personal, Nurture Camaraderie, and Communicate Mindsets.”  They are each short exercises that can be used before starting a lesson – or even as a quick break during instruction.  Some of them, like “Blind Disco,”  may require some an established history of trust before you try them.  Others, like “Long Lost Friends,” might be good for introductions.  Almost all of them were new to me, so I can’t wait to try them!


Stoke Deck printables:



The K-12 Kiki lab:




image_pdfGenerate PDFimage_printPrint

T3 Rpi WiFi Router Setup TP Link TL-WR902AC

We recommend purchasing this router pre-programmed to provide the rpi wireless network, but it must still be connected to your local school WiFi.

This router allows you to connect to any type of wireless network and re-broadcast it as a local private WiFi network – also one LAN port can be connected to a local networking device such as a Raspberry Shake.

This allows the RPi computers to talk to each other over the LAN and do other local area networking tasks.

Configuration Guide for Pre Programmed Router:

image_pdfGenerate PDFimage_printPrint

T3 Lesson 8: Project – Make a Whoopee Cushion:


This lesson is an opportunity for students to have fun converting their understanding of the technology into something in the real world.  A whoopee cushion is a glorified button that can be made out of easily available materials.


This video from the Raspberry Pi Foundation has a very good description of how to make this project work.

The detailed instructions can be found here:


Our challenge is to make the audio files play using node red.  You can follow the video and install this extra output node that is capable of playing audio files.




If you found success or didn’t, please post a response in the forum.

image_pdfGenerate PDFimage_printPrint

T3 Lesson 7: Advanced Node-Red and the camera



Setting up a camera can be one of the more exciting activities for your students to complete.  It provides immediate feedback that is very gratifying and provides ample opportunity to explore what can be done.


Here is the basic tutorial for turning on a camera: The default for the image on the pi is for the camera to be enabled.

RPi Node-Red: Camera

Once the camera is taking photos, it wasn’t super difficult to incorporate a button into the sequence or any sort of a trigger that is based on an “if-then” scenario.  If the sonic sensor is an example of an analog device that collects data and can be set to trigger a photo when a certain threshold is reached.

RPi Node-Red: Sonic Sensor (HC-SR04)



image_pdfGenerate PDFimage_printPrint

RPi: Streaming raspberry shake data to node-red


Learn how to send seismology data from a raspberry shake into a separate raspberry pi with node-red. And how to use the data once it arrives.



Raspberry shake, setup following this guide: https://t3alliance.org/rpi-setting-up-a-raspberry-shake/

A separate raspberry pi with node-red, running on the same network


Raspberry shake usually processes its own data, and publishes it to it’s own public databases. However it is possible to configure raspberry shake to send a raw data-stream from itself to any device your network can reach. Raspberry shake uses a UDP stream to send data from itself to any list of ip addresses and ports that happen to be listening. Using this raw data stream you can create your own graphs, or set up alerts and triggers in node-red.

This means that the raspberry shake could be physically located anywhere in a building, or using the proper networking setup anywhere in the world and you can still comfortably receive the data in node-red on your own computer.  Imagine an email alert being sent-out by your RPi at home, because your RPi shake at school detected some unusual vibrations.  Or you could trigger a camera to go off, and email you a picture whenever footsteps were detected in your room, the possibilities are endless!


What is UDP?

When stuff is sent over the internet it is sent using a protocol, which is a way of organizing data so that both parties know what’s going on. If you made an agreement with a friend to always use red envelopes when a message was urgent, that would be an example of a protocol. Most of the time when you download a file, or send an email it is sent using TCP protocol; which is rather strict. For example, if something messes up and the TCP packets (analogous to envelopes with letters inside) arrive out of order, they will be reorganized and only sent to the destination when everything is sorted out. UDP is much less strict, and is more like a raw flow of data vs an orderly sequence of letters. If UDP packets arrive out of order, or have some missing, or even if the data inside is messed up they’ll usually be sent straight along to the destination.  This is useful in projects like our seismometer because it is more lightweight with less latency, also it comes with a feature called multicast which allows a data stream to be sent to multiple destinations at the same time; which is exactly what is possible with the raspberry shake.

Getting Started:

The first thing you’ll need is the IP address of the pi that will listen for the data, this can be found just by hovering over the network applet here. The easiest way to ensure the listening pi and the shake-pi are on the same network is to plug them both into the same router using ethernet cables. Otherwise setting up a WiFi connection on the shake can be tricky and even interfere with the measurements.

Connecting to the rs.local  or raspberryshake.local or even the ip_address:80 of the shake,

From the settings page, come to the UDP streams tab

Here is where you’ll need the ip address of your listening pi, it’s also important to make sure it’s connected to the same network as the shake. If the shake is using LAN this means you’ll probably have to plug your pi into LAN to.

Here I’ve entered the IP of my listening pi, and used the default port 8888

Click the plus button and don’t forget to hit save.


Reading the stream on raspberry pi:

Starting with a fresh flow, we’ll drag the UDP IN node in.


For the configuration chose the same port as we used in the rs.local config, that would be 8888, and make sure to set output to ‘a String’ instead of ‘Buffer’.
If you hook your UDP RECIEVER up to a debug node you should already be able to see a stream of data coming in, if not something is wrong with your connection (probably raspi isn’t on the same network as raspberry shake).

Next we need the raspberry shake parser node, made by the guys who build the SHAKE.
This can be installed by going into the palette manager, as of now it’s the only result when you search ‘shake’.
The installation will take a few minutes, and then you can chain it with the UDP node like so.

All the rshake parser node does is take the raw thing outputted by the UDP node, and turn it into an object with various data sorted into properties. Using a a debug node we can examine the output. For example, the ‘channel’ property allows you to discriminate between different sensors on the shake. We are using a raspberry-shake ‘1D’  so we only get one channel ‘EHZ’.


Using the data:

[{"id":"d5d2efbb.2600e","type":"function","z":"b308f371.c9fa","name":"Average Magnitude","func":"acc = 0;\nnum = 0;\nfor(const p of msg.payload.packets)\n{\n    acc += Math.abs(p);\n    num++;\n}\n\nacc /= num;\n\nmsg.payload = acc;\nreturn msg;","outputs":1,"noerr":0,"x":570,"y":360,"wires":[["c8911fad.47f72"]]},{"id":"c8911fad.47f72","type":"smooth","z":"b308f371.c9fa","name":"","property":"payload","action":"mean","count":"25","round":"0","mult":"single","x":780,"y":360,"wires":[["6270e4ac.2138fc","64858a7e.ecae14"]]}]


You can copy and paste this code-block to import an ‘Average Magnitude’ function-node, it takes the raw data from the rshake parser node and turns it into a more easily usable integer which describes the average amount of vibration over the past couple of seconds.

To import code-blocks like this, use the top right menu and select ‘import -> clipboard’ then a box will pop up allowing you to paste in the flow.

A flow that switches based on the average amplitude, and sets off a buzzer would look something like this.

We’ve plugged a buzzer into pin 16, and have a switch node set to measure when the average magnitude rises above a certain value. Then we either send 1 or 0 to the pin which turns it on or off; turning the buzzer on and off in the process.


Raspberry shake has their own examples that can be found on their GitHub account.

This one:  https://raw.githubusercontent.com/raspishake/raspshake-nodeRED-examples/master/realtime-plot-2.txt

Graphs seismic data onto node-red dashboard, you’ll need to install the ‘dashboard’ nodes through the palette manager.
When you import it make sure to replace their udp input node with yours, or change the configuration to match the one we made earlier.

One other change is the connection between the ‘switch’ node and the ‘format plot values’ node. The flow is designed to support a shake-3d which would be outputting 3 separate data streams (x, y, z).  If you followed this tutorial with a shake 1d then only one valid data stream will be coming out of the switch block, and it may not be one of those ones connected by default.

You can find the correct attachment point to use by trial and error, or by examining the data coming from the parser node and comparing it to the switch node.

To view the graphs generated by this flow, use the address you use to access node-red, with ‘/ui’ after it.
So in my case that would be



image_pdfGenerate PDFimage_printPrint

T3 Lesson 6: Node-Red and programming the GPIO pins

Note:  This is divided into two section



This lesson introduces Node-Red and how it can be used to control the GPIO pins on the Raspberry Pi.   The first part of the lesson is seeing how Node-Red is a programing language that follows the basic concepts identified earlier.  The second part is in understanding the GPIO pins and how they function with and without Node-Red. A challenge activity that students build such as push button timer or stop lights will be available soon.


Here are three tutorials that you can explore with your students that all go over basic Node Red GPIO pin functions.

RPi Node-Red: RGB LED


RPi Node-Red: Push Button

RPi Node-Red: Buzzer


Post your reflection in the forum, if you are comfortable sharing.  We’d like to hear how it went and what we can do to improve this process.


image_pdfGenerate PDFimage_printPrint

T3 Lesson 5: Scratch and Basic Programming


This lesson teaches about some basic programming constructs using one of the simplest programming languages.  Many students will have been exposed to it, so if it’s not for your crew, skip it. There are enough advanced options that a student can make a very complicated program.  I think of it like legos – it’s a good space to play around and get familiar with the basic programming concepts.


Here are slides that can be helpful in introducing this topic.

Here is a link to my explanation of the Astronaut reaction time game.  The tutorial suggests that you use the older version of Scratch on your Pi, version 1.4.  It can be done with that or else you can use the slightly slower version 2.0.  Version 2.0 is identical to what you find when you use scratch in a basic computer browser.  It is Flash-based and it runs a little slower than version 1.4.


image_pdfGenerate PDFimage_printPrint

T3 Lesson 4: Computers, Raspberry Pi and the internet of things



This lesson is a presentation that is meant to open students eyes to the power of the Raspberry Pi.  We focus on the basics of a computer, input, and output, and share examples of cool projects that are done in a number of industries.  Biomedical, home security, seismology, environmental science are a few that can be shared. A discussion about the Internet of things (IoT) and how computer programs function will be valuable here.



In the slides, there is a link to the Code.org video – What makes a computer a computer – Its an excellent introduction to the idea of a computer and the way that it takes in and puts out information.


After going through the video here and sharing some of the photos of cool projects I try to get a discussion going in which the students have a chance to share what problems or issues might have been addressed with the technology.    If there is someone in your community willing to share their Raspberry Pi’s project in some capacity – this is a wonderful time.  The idea here is to build excitement for what is possible and then to get them ready for the challenging work ahead.


Post your reflection in the forum, if you are comfortable sharing.  We’d like to hear how it went and what we can do to improve this process.


image_pdfGenerate PDFimage_printPrint

T3 Lesson 15: Air Quality Sensors


Air quality is one of those topics that connects all of us.  It’s not difficult to find someone in your community who is sensitive to variations in air quality and is willing to share their story as a seed for an air quality monitoring project.   As I describe above,  our project with air quality sensors came out of the problem that our community in Hawaii faced during the 2018 volcanic eruption.


Setting up for this day depends on the resources that you have available to you.   In the story presented about Hawaii, we had students split up into teams of 3 to build air quality sensors for various areas around our region.   If you just have one, then you will want to emphasize more about the data that is collected and what it means than the building process.   Building the kit is pretty straightforward if you follow the tutorials below.

The connection with what the data means is the exciting part.  I would find someone in your community who is interested in talking with your students about Air Quality.  Once the students know how to manipulate the LCD screen, this can turn into a way for the Air Quality information (and other info) to be displayed.


Here are the building steps:
Here are the programming steps:
Here are the steps associated with programming the LCD screen:


You will know this is working on the specific level if students or you can notice changes in air quality after tweaking the environment slightly.  An open or closed door, any sort of dust and you should be able to detect changes.  On the larger level, if students feel comfortable applying this technology to a community issue then you have opened a huge door.  There are 3 sensors connected, nothing is stopping a student from identifying and setting this device up with more sensors that can send information to the cloud.   This basic sensor is like the gateway project to more remote monitoring projects.


image_pdfGenerate PDFimage_printPrint

Rpi: Time and Timezones


Understand how to configure time and timezone settings on the raspberryPi.

What you will learn:

How to set the timezone on boot, or later and make sure time is being updated correctly.

What you will need:

RaspberryPi and an internet connection.


Getting Started:

The first time you boot the raspberryPi you’ll be confronted with this setup page:

This is because WiFi requires a working timezone setup from the start, when you click through you’ll have some localization settings.

But if you need to get to these settings again, they can always be accessed through the configuration menu here:
This screenshot is after I used the WiFi applet to connect to the internet, which I’ve circled.

Here is what it looks like when you set the timezone, it’s also important to configure the WiFi country correctly or you won’t be able to connect to WiFi.

Finally, you can confirm that the time is being synchronized over the internet using the terminal.
Here I’ve opened a terminal, and used ‘timedatectl’ to confirm that network time is enabled, and that the time has been synchronized.

You can also confirm that your timezone settings worked correctly here.

image_pdfGenerate PDFimage_printPrint

T3 Lesson 3: Building the Box & Raspberry Pi Kits


Now that students are pumped up with the sense of efficacy that comes from building a brushbot, its time to switch to building a computer in components.  This is an example of an opportunity to hold space for the students to “figure it out” and continue on their growth mindset pathway.  Building the boxes can be done without much instruction given that the culture of growth mindset has been set.  Students figure out how to assemble the boxes in about 40 minutes.   If you have an hour, expect that students will spend the final part of class exploring the Pi and getting to know its features.


Preparing the space – Make sure that each student has sufficient space to assemble their kit.  If you have students that are working together, make sure they have sufficient space to spread out and that they have access to power nearby.   You can share the slideshow showing a guide and a quick video of the assembly process but try to refrain from giving too much directive.  It’s a puzzle and the pieces only fit one way.


It helps to have at least two people doing it at the same time, so they can compare and help each other with the process.  We purposely did not give step-by-step instructions because the challenge is figuring it out, using your growth mindset to not give up or get too frustrated.

Here’s a video of the process.

Once the box is together, the next step is to plug in the power, monitor and raspberry pi.  This will create a functioning computer loaded with the basics of a web browser and a few games.

I recommend checking that the box is assembled and that the screws are tight before handing the students the bag of electronic equipment.

Once the bag of equipment is handed out introduce the idea of physical inputs and outputs.

Share the short video about the anatomy of a Raspberry Pi.



Allow students to explore around on the pi and recognize that this is a fully functioning computer.  Students often become interested in Minecraft.  If there is a student that you identify as “minecrafter” you can ask them to take a moment to share their skills.

Celebrate the success that just occurred!  You’ve just assembled a working computer!!  Reflect on what you did well, and what things you could improve on for your next challenge(s).

Post your reflection in the forum, if you are comfortable sharing.  We’d like to hear how it went and what we can do to improve this process.


image_pdfGenerate PDFimage_printPrint

Rpi Airquality Station: Indepth Assembly


Assemble an RPi Airquality Station from the parts kit, and turn it on for the first time.

What you will learn:

Special considerations for connecting sensors to the airquality hat, and how each part in the kit goes together.

What you will need:

Full RPi Airquality Station kit.

Getting Started:

Here are the sensors, circuit board, raspberry pi, led panels, and the piece of wood they all attach onto.

First we’ll line up the led panels. The led matrix’s we use have a chained model, which means data enters one end, and is transmitted down a connected line of led panels until every pixel has been set. The arrows printed on the panels and the wood indicate the direction for data flow. Data originates in the raspberry pi, enters the airquality HAT, and goes from right to left through the led panels.

Seeing as we’re putting the panels upside down for assembly the arrows will be slightly different though.

But once they’re flipped vertically the arrows will match up with the ones printed on the wood panel.

Seeing as data flows from one panel to another we need to connect the two using the ribbon cables.

The cable on the right will eventually be plugged into the airquality hat, but it’s less awkward if you wait until later.


Next we’ll attach all the sensors to the airquality hat. Here is what they look like laid out before being plugged in.

The PMS sensor is oriented with the intake fan south, as pictured, make sure the screw holes are facing the wood.

It’s vital to keep cable orientation in mind when plugging these in, the cables and connectors are not polarized so if you aren’t very careful you could easily fry your entire airquality kit by plugging something in backwards.

First we’ll plug in the PMS-5003 air particulate sensor.

For this sensor the wire needs to make ONE twist, meaning the connector is oriented backwards on the board compared to on the PMS. Double check the way the sensor box is oriented and the cable while connecting these.


Next we’ll connect the BME-280 sensor which is the simplest

For this sensor, the cable should be lying flat against the wood without any twists, and plug straight into the airquality hat. This is the only one of the three sensors where the cable doesn’t need to be twisted.


Next is the MHZ C02 sensor which can be the most confusing

First check the orientation of the sensor and the hat board like in this picture. This cable has to make exactly ONE twist between the sensor and the board. You can tell if the cable is oriented correctly when the colors are flipped vertically on one side from the other. Even though it is hard to spot the twist in the above picture, you can still tell that RED is on-top on the left, and BLACK is on-top on the right; indicating that the cable has indeed made ONE twist.


Finally double check all the sensors and their connections.

Attaching sensor hat to led matrix:

Then the power cables need to be attached from the sensor-hat to the led panels.

Next the power cables need to be attached from the sensor-hat to the led panels.

Pay close attention to the polarity, the ‘GND’ text should line up with the black wires.

Screwing Everything Together:

Now that the tricky part is done we’ll start screwing everything together.

To attach the display’s to the wood you’ll need these parts here:

First attach the standoffs to the panel like this.

Although in your case they’ll be all kinds of ribbon cables in the way and the two panels are plugged into each-other.

Then use the screws though the backside of the wood to attach them like this.

Make sure to tuck the wires neatly how you want them, because the only way to adjust this later will be to take the entire thing apart again.

The final ribbon cable from earlier, coming out of the side of the led matrix needs to be plugged into the airquality hat as shown.


The ribbon cables do have a correct polarity, but this is made obvious by the latch on the connector itself.

Next we’ll attach the board and the raspberry pi to the back-plate.

Here are the parts you’ll need.

The pins in the raspberry pi will naturally line up with the socket on the airquality hat as long as the screws line up.

Here is the order that the screws and standoffs go together

This animated gif shows the assembly order.
If it’s not animated you can click on it to open it.

First screw the mini standoffs through the backplate, then the raspberry pi nestles on-top. Next the longer standoffs screw on-top of the mini-standoffs. And finally screw the sensor hat on-top of everything else.


Mounting the Sensors:

Next we’ll mount the sensors to the backplate.

First is the PMS which is the only one of the three sensors that uses screws. Here is a picture of how the screws go into the sensor box.

There are pre-aligned holes and an outline where it should go.

The other two sensors are simply stuck onto the board with sticky strips.

Here’s how everything looks screwed and glued down.

First Power On:

Before powering on it’s important to double check all the connector polarities against this guide.

Now it’s time for the first time node-red and grafana setup!: https://t3alliance.org/rpi-airquality-station-setting-up-the-default-flow/


image_pdfGenerate PDFimage_printPrint

T3 Lesson 2: Growth Mindset


Very soon after introducing T³Alliance it’s time to set the tone for the entire program with the introductory lesson on growth and fixed mindsets.   As outlined in the video above, this fits into three components:  1.  Teaching about growth mindset; 2 Set the tone with an ice breaker; and 3. Build a robot with a brushbot.

Here is the link to the presentation  referenced above. The easiest way to get students on the same page is to share the Carol Dweck RSA Animate video.  The video will introduce the importance of how we speak to each other about our work.

You may want to look for some materials for an ice breaker.  These can be short pieces of rope that can be used to start off the program in the Infinite Loop Handcuff Solution: https://youtu.be/aiNl-EL6vfk.

Ready yourself for the brush bots with a plan for how you intend to allow for a competition to move forward.  It may be that you have some rulers that you tape down to the table in a format for tracks.  Here is a link to a resource that can be used with instructions for a brush bot competition


Do a challenging activity together where students will be outside what they are comfortable doing.  Can they, under stress, manage their emotions and practice good feedback to themselves and others?  Do they give up?  After the activity, have them rate themselves with the attached EffortRubric

We believe in allowing curiosity, exploration and PLAY to happen.  It means kids have to feel safe to explore and have fun, even in the midst of failures.



The term we now use is “neuroplasticity” to change the way our brains think.  


Imagine your brain is like a forest. You could potentially make a walk­ing path anywhere, but ahead of you is the road most often followed. The ground on this path is smooth and compacted, the brush has been cleared.

It’s easy to walk on, especially since you’ve walked it hundreds of thousands of times before. You walk on it automatically, unconscious of the decision to move in its direction rather than go, or be, another way.

If you want to change a belief or a habit or a physical sensation or negative self-talk, you must create a new path. You need to take a road less traveled.

You’ll need a machete to clear away the brush and branches. You’ll probably get scratched by spiky plants and twigs along the way. It will be hard.

You may ask yourself “Why bother? There’s a perfectly good path just over there.”

It’s easy to slip back into old ways of being.

That’s why most of all, it’s absolutely necessary to walk on this new path over and over and over again until the ground is smooth and compacted, until the old path has for grown over and the forest has reclaimed that space with a density of plants. Now the easy path is the one you created, consciously and with a healing intent.

Here’s a 5-minute video about Growth Mindset vs. Fixed Mindset.

Remind students that it’s only through failure that we gain our greatest knowledge.



Congratulations on taking the first step towards your students learning all they can and not limiting themselves or others.  Changing from a “fixed” to a “growth” mindset is not easy.  We often revert back to what we know when under stress.  Encourage your students to keep this in mind as you continue to reinforce positive feedback.


Other tools you may want to tap into are from Carol Dweck’s site:  https://www.mindsetkit.org/




image_pdfGenerate PDFimage_printPrint

T3 Lesson 1: Overview of your Program

Its the first day that you meet up with your students and they want to know what T³ Alliance is all about!  Specifically, what will this year, or summer, or semester look like for them?   To put this lesson together, you will need to plan a program based on what your individual situation looks like in your community and school.   This post will help you assess your situation and come up with a plan that you can share with students.


The first day of a T³ Alliance class is exciting.  The students sitting before you may have applied, or they may have been selected to be there, but the hopeful look of expectation will be the same.   In teacher speak, this day is sometimes called the “honeymoon” period where students are well behaved and listen to what you have to share.  You make a first impression today that helps send the message that you are both excited and that you mean business!

This first lesson will likely take from 30 – 45 minutes and will meet these objectives.

Objectives for the student on this first day:
1. Be able to describe the goals of the T3 Alliance program.
2. Learn about some projects that have been done by other T3 Alliance programs and what might be done by your program.
3. Understand what the expectations will be for a member of this class or club.

If these are the objectives for the students, then you as an instructor need to feel comfortable in answering these questions.  Let’s start by unpacking each of these objectives.

  1. Goals of T³Alliance.

This is a presentation that can help you understand program goals.

  1. Projects that have been done by other T³ Alliance sites, and what might be done by your site.

This is a presentation that describes some projects that were done by T³ Alliance programs and some questions that you may want to consider as you outline possible community projects.

  1. Understand what the expectations will be for a member of this class or club.

For you to share expectations, you will need to consider the reality or context of your program within the UB program at your University and understand the expectations for the program on a national or programmatic level.

Here are some questions to consider with your director:  What will the teaching space or classroom space be like? What existing resources does your UB program have? What sort of student-teacher ratio can you expect?  What are some “shovel ready” community engagement projects?

Things that are not negotiable for being in the program are:  Having a growth mindset culture.  Being accountable to each other, the community members they work with, to you (the instructor) and T3 Alliance.

There will be times when you meet, expectations for students in the program, and a vision that you will share with them for how this program will open opportunities.  A general T³ Alliance presentation will be available that you can share.


Teaching this!

Here are some resources that you will have at your disposal:

  1. Google slide presentations about T³ Alliance goals and example projects.  With a student focus!  You are welcome to copy and edit as necessary.
  2. Evaluation tools and expectations.
  3. List of questions to go over with the director.

Edit this:  Edit these to meet the needs of your program:

Prepare your presentation and practice what you are going to share.  As you think about teaching this, imagine having some time for students to brainstorm and talk about what they are excited to work with.   If possible, try to have your first T³ Alliance meeting in a room that has access to computers. The initial survey takes about 20 minutes.


As you finish the first day of presentation, consider sharing what you are going to presenting on the first day in the forum.



image_pdfGenerate PDFimage_printPrint

Lesson Sequence

Here is a guide to how you may choose to unpack your program in the first summer of working with T3 Alliance.  The same sequence could be used during an academic year, however, it may be more difficult to have students involved in community projects on a tight schedule.   If you are seeing this post as part of the community forum, please feel free to contribute with your suggestions.  Links will be added to this post for the various lessons referenced. 

Setup:  It would be ideal if you have a dedicated area where you can have your T3 Alliance program.  For many programs, this simply isn’t a possibility. Here is a sample flowchart of some of the questions you should consider.

Order of lessons:

  1.  Overview of your Program:

There will be times when you meet, expectations for students in the program, and a vision that you will share with them for how this program will open opportunities.  A general T3 Alliance presentation will be available that you can share.

  1. Lesson on Growth and Fixed Mindset:  

This lesson works well in three parts:  In the first part teach them about growth and fixed mindsets and then set the culture that this classroom is a safe learning environment where we use phrases that praise effort.  In the second part, we practice growth mindset with an icebreaker that causes students to reflect on how they think about hard situations. In the third part we build brush bots and let students compete.  

  1.  Build the raspberry Pi Kits:

Building the boxes can be done without much instruction given that the culture of growth mindset has been set.  Students figure out how to assemble the boxes in about 40 minutes. Check that screws have been tightened.

  1. Computers, Raspberry Pi and the internet of things:

This lesson is a presentation that is meant to open students eyes to the power of the Raspberry Pi.  We focus on the basics of a computer, input, and output, and share examples of cool projects that are done in a number of industries.  Biomedical, home security, seismology, environmental science… A discussion about the Internet of things (IoT) and how computer programs function will be valuable here.

  1. Scratch and basic programming:

This lesson teaches about some basic programming constructs using one of the simplest programming languages.  Many students will have been exposed to it, so if it’s not for your crew, skip it. There are enough advanced options that a student can make a very complicated program.  I think of it like legos – it’s a good space to play around and get familiar with the basic programming concepts.

  1.  Node-Red and programming the GPIO pins:

This lesson introduces Node-Red and how it can be used to control the GPIO pins on the Raspberry Pi.   The first part of the lesson is seeing how Node-Red is a programing language that follows the basic concepts identified earlier.  The second part is in understanding the GPIO pins and how they function with and without Node-Red. A challenge activity that students build such as push button timer or stop lights will be available soon.

     7. Advanced Node-Red and the camera:  

This lesson will introduce more advanced features of Node-Red programming along with the installation of the camera.

  1.  Project – Make a Whoopee Cushion:

This lesson is an opportunity for students to have fun converting their understanding of the technology into something in the real world.  A whoopee cushion is a glorified button that can be made out of easily available materials.

  1.  Control your device from a distance – remoting and networking through a LAN:

This lesson introduces students to the idea that they do not need to be physically connected to a screen to “talk” to their Raspberry Pi.  

  1.  Setting up Node-Red to send to google photos:

This lesson will explore how to set up a flow to send photos to a google photos account using different triggers.

   11. The Design Thinking Process:

This Lesson will introduce the design thinking process and delve into the various communication skills that are within it.  The process will be introduced in relation to the IoT context that students have been exploring. The format of the mini-grant and the idea of deliverables will be discussed and modeled in role play scenarios.

  1. Basic videography:  

We assume for this lesson that students have some access to cameras, either the ones on their cell phones or ones that can be used within your UB program.  This lesson will focus on taking still photos and short videos that can be useful as part of a documentation video.

  1. Project – Build a selfie station:

For this project to be most impactful for the students, find someone from the community who would have a use for the project. Have them come in and share their problem with the class, and let the students interview them and follow the design thinking process.  I would put them in teams of 3 – 4 students, but it can also be done as one class project. Have them submit the grant, build and install it, and then have them be accountable for their work.   This project may take several days. To make it really impactful, have the community member present during the installation and provide positive feedback.

  1.  Sending data to a cloud service and building an analog scale with a servo:

This lesson introduces students to Thingspeak and other cloud services that collect information from a sensor.   Exploring the temperature, pressure, and humidity sensor can be a fun way to engage students in some hands on science experiments.  Blowing gently across the sensor can change the temperature and the pressure. This is connected with a lesson on the servo motor in order to set it up as scale so that it can become a dial.

  1.  Air quality sensors:

This can be turned into a project that meets a community need or it can be taught as a lesson on air quality.   A lesson on air quality and the ways that it is measured precedes the assembly of the air quality kit. A series of experiments that test various levels of air quality can be done as a class.  Ideally, students can work on this project in groups of 4 -5.

    16.  Controlling the LED Screen:

This lesson introduces students to a large matrix LED screen that often comes as part of the air quality kit.  A group of students can remote into the pi and edit the images and information displayed. The screen can become an important output device used in a variety of community projects.

  1.  Seismology and the Raspberry Shake:

This lesson introduces seismology,  the Raspberry Shake seismogram, and the cloud-based monitoring system that it connects with.   After learning about the physics of the seismogram, one will be set up in a classroom or a UB office and some experiments can be done to measure its sensitivity and how seismic waves travel.   The data from this shake is sent to a database where seismic events can be monitored in real time.

  1.  Communication norms and field trip:

This lesson introduces students to communication norms that are expected in your community and helps students see where technology is already being applied or could be applied.   Set up a field trip to a location where students can learn about some aspect of your community that’s worth them knowing about. This is an opportunity to teach students that they are good listeners and that they have the capacity to give back.

  1.  Design Challenge introduction:

This lesson introduces students to the T3 Alliance Design Challenge:  This is a commitment that involves your UB program supervising and overseeing their involvement in the project.  In general, a group of students is looking to tackle a problem with their technology skills and a small five hundred dollar materials budget from your program.  They need to follow the design thinking process, involve their community, and produce a one minute video describing the project.  A panel of judges will evaluate the submissions and T3 Alliance will recognize them in some capacity.

  1.  Local, regional, or national projects

Ideally, your students are working on a local project that has evolved and has brought on new challenges.  Introducing students to the T3 Alliance community forum will open new opportunities for collaboration on projects that either share data or share techniques for addressing issues.  


image_pdfGenerate PDFimage_printPrint

RPi Airquality Station: setting up the default flow


Connect to the airquality station’s node-red instance, and configure the Grafana node.

What you will learn:

How to connect to the airquality station’s node-red, and detailed info on the Grafana node configuration.


What you will need:

An airquality kit connected to the internet, as per this tutorial: https://t3alliance.org/rpi-airquality-station-setup-and-access/


Connecting to Node-Red:

After you have connected your pi to the internet (https://t3alliance.org/rpi-airquality-station-setup-and-access/) you’re ready to setup the default flow to log data properly to Grafana.

If you’re using the pi locally (with a keyboard and display plugged into the air-quality station) you can just open the browser and click the Node-RED bookmark in the bar.  If you’re on a different computer, first find the IP address to use from the mini-oled on the airquality station, and then on your own computer enter as the URL. IP_ADDRESS:1880. Our airquality station was assigned the IP address of ‘’, so to access our Node-RED flow I use ‘’.

Configuring the flow:

The default flow is pretty big, but not that complicated.
The part we are interested in is at the very bottom and looks like this.








All the sensor-nodes are being injected into a Grafana node, and then the Grafana node is being injected into a text node to print the url onto the display.
If you double click the Grafana node you’ll get a settings page like this.

The default settings do work, and do log your data onto a webpage where you can view graphs etc. However the default location is somewhere in the Arctic Circle, and you get a random jumble of numbers and letters for your Grafana url.

So the only two settings that need changing from the default are ‘Geohash’ and ‘Location Name’.
For the Geohash you can click the link in the settings page, or here: http://geohash.gofreerange.com/

Scroll around on the map, and zoom in to find your location, be mindful of how many digits you use. The geohash data will be public on the world-map. You can tell from how specific the location is from the size of the squares.
Looking at this shot of east Hawaii, ‘8e98’ is pretty good at showing where I kind of am on the island. ‘8e98n’ Shows what half of hilo-town I’m in. And then ‘8e98ny’ shows the exact area of streets I might be on. I wouldn’t recommend going further than ‘8e98’, or even ‘8e9’.

The second option is the location-name, this will allow you to use that name in the aqeasy url instead of the serial number that resides there right now. You can’t just use anything you’d like though. Location Names are not reserved, or restricted; so if you use something obvious like ‘School’, or ‘Outdoors’ you might find your data being overwritten by someone else in the future.
One other caveat is that data always sticks to the name it was uploaded with, so if you change your location name any data you recorded with the previous name won’t be on the graph with it.
So whatever name you chose now, the data on your graph will be from this moment on.

You can leave Location Name blank, the only downside is you have to use the serial-number url to look at your data.
I’m using easyboticsHilo, so now my data is visible here: g.aqeasy.com/easyboticsHilo

Remember to hit ‘deploy’ in the top right corner after you’ve finished making changes.

The data on Grafana won’t update visibly for a few minutes after you’ve set this up.


Viewing your data:

Once you have set your geohash in the flow and deployed, your data will start being updated onto the public world airquality map.


Your own data is viewable at the URL displayed by the default flow. If you change the flow so that it’s not displayed anymore remember that it’s being constantly outputted from the grafana node.

Here is what my data looks like at http://g.aqeasy.com/0e1c6c307

image_pdfGenerate PDFimage_printPrint

RPi Airquality Station: setup and access


Connect your airquality kit to the internet to enable online data-logging. Either through WiFi or a wired LAN network.

What you will lean:

The best method of configuring your airquality kit depending on what hardware is available.

Parts List:

easybotics airquality kit



The easybotics airquality has a default configuration that even logs your data to the grafana map, and gives you a url to access your graphs. The problem is you can’t change the node-red flow, update your geohash from the default (in the arctic circle), or create a custom-url for accessing your data. This tutorial will try and guide you through various ways to start using your airquality station to its full potential.


Option One: I have a puzzlePi kit

Congratulations, this is the easiest possible way to connect to your airquality kit.
First hook up your display, keyboard, and mouse to the airquality kit as pictured:

First you’ll need to setup your wifi country and timezone, the tool for doing this opens by default so it should be right there.

The most vital step of setup is getting the airquality kit onto your WiFi network. This can be accomplished with the wifi applet, here:

Next restart the pi or power cycle, when the flow starts up you should see an IP address on the mini oled display.
Now you can move on to the next tutorial: https://t3alliance.org/rpi-airquality-station-setting-up-the-default-flow/, you can even complete this tutorial using just the pi build into the device.


Option Two: I have a HDMI display and a keyboard/mouse

this option is actually identical to Option One, except instead of  using the puzzlePi’s display and keyboard you can use your own, scroll up and read Option One.

Option Three: I have a LAN network (simple)

If you have a LAN network that you’re PC is always connected to you can easily hook up your pi to that.
First just connect the LAN cable here:

Power cycle the airquality kit, and hopefully it should be assigned an IP that appears on the mini-oled.
Now you’re already to move-on to the next step. https://t3alliance.org/rpi-airquality-station-setting-up-the-default-flow/


Option Four: Use LAN to setup the WiFi

VNC server is enabled by default on the airquality station, so once you have a LAN connection as established in Option Three you can use this to setup the wifi.
Follow these instructions https://www.raspberrypi.org/documentation/remote-access/vnc/ to setup VNC client on your machine.
Remember that VNC is already enabled on the airquality station, so you can skip down to the ‘Connecting to your Raspberry Pi with VNC viewer’
VNC viewer can be downloaded for your personal computer here: https://www.realvnc.com/en/connect/download/viewer/

Remember that the IP address is listed on the oled display.

Once you have the desktop, you can use the same steps from option One to setup your wifi and move onto the next tutorial!

image_pdfGenerate PDFimage_printPrint